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Kac-van Moerbeke equations associated with 
two-dimensional SU(n + 1) periodic Toda lattices 

R S Farwell and M Minamit 
Blackett Laboratory, Imperial College, London SW7 2BZ, England 

Received 22 July 1981 

Abstract. Various results known for one-dimensional periodic Toda lattice equations are 
generalised to two dimensions. In particular, a generalisation of the Kac-van Moerbeke 
equations is derived from a set of first-order differential equations, of which the zero gauge 
field strength is an integrability condition. The generalised equations are shown to be the 
unification of two different periodic Toda lattice equations and they naturally produce the 
Backlund transformation. The two lattice equations are simultaneously derived from a pair 
of 2(n + 1) x2(n + 1) potentials satisfying the zero field strength condition. 

1. Introduction 

The Toda lattice equations governed by SU(n + 1) have much richer properties than 
those governed by other Lie groups. For example, if the n x n Cartan matrix (Kij )  in the 
SU(n + 1) Toda lattice equation is generalised so that the non-zero entries are 

Kji = 2 Kij+l =Kii-I= -1 

where the indices are now defined modulo n, then the SU(n) periodic Toda lattice 
equation is obtained. 

Furthermore, there is a set of first-order one-dimensional equations$ considered by 
Kac and van Moerbeke (1975) which connects two SU(n + 1)-type Toda lattice 
equations. In other words, the Kac-van Moerbeke equations (hereafter referred to as 
the KVM equations) are simultaneously equivalent to two SU(n + 1) Toda lattice 
equations (Toda and Wadati 1975), one of which can be regarded as a Backlund 
transformation of the other (Wadati and Toda 1975). 

In this paper, we show that a similar phenomenon occurs in two dimensions; that is, 
we find a generalisation of the KVM equations and describe the circumstances under 
which they reduce to a pair of two-dimensional Toda lattice equations. In the course of 
this investigation we rederive the Backlund transformations given by Fordy and 
Gibbons (1980) and Leznov et a1 (1980). 

Before entering into our main discussion we shall summarise some points of the 
one-dimensional KVM theory to facilitate later comparison with our two-dimensional 
case. 

t Address after 1 September 1981: Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 
Japan. 
$This set of equations has been considered in the different context of plasma physics by Zakharov et a[ 
(1974). 

0305-4470/82/020355 + 12$02.00 @ 1982 The Institute of Physics 355 



356 R S Farwell and M Minami 

The one-dimensional KVM equation is of the form 
a$i = e-St+* ( 1 . 1 )  

If two kinds, Qk and QF, of Toda’s displacement variable are introduced by 

S 2 k  = Q! - Qk S Z k + l =  a k + l - @  (1.2) 

S2k+SZk+l=Qk+l-Qk S 2 k + l + S Z ( k + l ) =  OF+, -0; (1.3) 

so that 

then equation (1.1) may be decomposed as 

atQk = exp(-&k-~) + exp(-Szk) 
(1.4) 

By differentiating (1.4) with respect to t and using (1.3), Qk and QE may be shown to 

a,QF = exp(-Szk) + e x p ( - S ~ + d .  

satisfy individually the following Toda lattice equations 

a:Qk = eXp[-(Qk - Qk -1 )I - eXp[-(Qk+ 1 - Qk )I 
(1.5) 

= exp[-(Q! - QF-l 11 - exp[-(Q:+l- Q!)l. 
By substituting (1.2) and (1.4), it is easy to see that (1.4) represents a Backlund 
transformation for the equations (1.5). 

A further attraction of the theory is that the KVM equation (1.1) may be derived from 
the Lax pair 

a,L = [B, L] (1.6) 

where the only non-zero entries in the matrices L and B are respectively 

Ll,+l = Ll+ll  = a, B1,+2 = -B,+2, = alal+l 

with a, = 1 exp(-&) (Kac and van Moerbeke 1975, Moser 1975). Moreover the two 
Toda lattice equations (1.5) remarkably may be obtained from the even and odd 
diagonal entries in the associated Lax pair (Moser 1975) 

atL2 = [B, L~] .  (1.7) 

If we restrict the index k in (1.5) so that it is defined modulo ( n  + l), then Qk and QF 
each satisfy a one dimensional SU(n + 1) periodic Toda lattice equation. Our aim in this 
paper is to determine the two-dimensional generalisations of (1.4) when k is periodic 
and hence generalise all the above aspects of the KVM theory. 

The paper is arranged as follows. In P 2 the two-dimensional SU(n) periodic Toda 
lattice equation is derived by extending the potentials B, and B E  defined in our 
previous paper, (Farwell and Minami 1982) which we shall refer to as I. The 
terminology ‘main equation’ and ‘subsidiary equations’ of I will be used again here. In 
§ 3, by using a special solution of the main equation, the set of subsidiary equations 
turns out to be a set of KVM equations. As a consequence, two sets of variables, both of 
which satisfy the two-dimensional SU(n + 1) periodic Toda lattice equations, are found. 
Section 4 includes a discussion of a Backlund transformation, where the Lie-type 
transformation is included automatically. In 3 5 we propose a generalisation of the Lax 
pair (1.7) by specifying a 2(n + 1) x 2(n + 1) representation of the potentials, which 
simultaneously gives the two Toda lattice equations. However, a detailed proof of the 
derivation is reserved for the appendix. The final section contains a summary of the 
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various aspects of the theory of two-dimensional periodic Toda lattices that we have 
considered and also comments on this theory as a whole. 

2. Preliminaries. Pair of potentials which give rise to periodic SU(n +1) Toda 
lattices 

In I it was the potentials B, and B E  which gave rise to the non-periodic Toda lattice 
equations via the zero field strength condition. By applying the method of Bogoyav- 
lensky (1976), these potentials can easily be converted to those which in a similar way 
give the periodic SU(n + 1) Toda lattice equations. 

The set T+ of positive simple roots of SU(n + 1) is extended to include the negative 
maximal root, -F. We denote the extended set by 

ii = {T+, -F} .  

With respect to the ordering of the roots described in appendix 1 in I, F corresponds to 
the ( n  + 1)th element of ii and so the Chevalley basis for a, is extended to include 

& + I  = en+ln+l - e l l  E,+t = -e,+ll E-( ,+I)  = - e l , + l .  

By analogy with (2.19) of I the extended potentials are given by 

In (2. l ) ,  a and a' are constant scaling factors, the implication of which will be discussed 
in 0 4; and K is the extended ( N  + 1) X ( n  + 1) Cartan matrix for SU(n + 1). For n > 1 K 
has non-zero entries as follows 

Kii = 2 K .  l + l l  . = K . .  l l + l - -  --I (2.2a) 

where the index i is defined modulo ( n  + 1); and for n = 1 

K11= K22 = -K12 = -K21= 2. (2.2b) 

By substituting the potentials B, and B, into the zero field strength condition, we 
obtain, as before, a pair of subsidiary equations and a main equation. The former may 
be solved for y p  and f a  and the solution substituted in the original form of B, and B, to 
give the analogue of (2.28) in I, namely 

B, = a€+ c [exp( -a' g c s  c K ~ ~ J ~ ) L  + a ( a u + a ) ~ a ]  

B,= - a c e  c [exp(-a B E E  c K . ~ + ~ ) E , , + ~ ' ( ~ , ~ ~ ) H , ] .  
(2.3) 

Since the extended Cartan matrix is singular, it is convenient here to use the 
alternative Toda lattice variables 

(2.4) 
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Furthermore if we define 

pm = aum + &Gm (2.5) 

then, after substituting for y m  and ym, the main equation becomes 

that is, the periodic Toda lattice equation. 
As we remarked in the final section of I, we can consider the set of linear equations 

d e  = ew (2.7) 

as an alternative to the zero field strength condition. In (2.7) 8 is a row of O-forms and w 
is the matrix connection 1-form. 

To rewrite (2.7) in terms of components, the potentials B, and Ba are used in the 
following matrix form: 

where di, di, ci and ti are given by 

d .  I + l  - d . = a  I U U .  I 2. 1+1 -2. I =a-ei U (2.9) 

(2.10) -ri - -  
cy = Ti e""! c i  = y i - l  e""z-1 

and the non-specified entries are all zero. In (2.9), (2.10) and hereinafter, all indices i 
are defined modulo ( n  + 1). Since 

w=B,  du+B,-, dii 

equations (2.7) become 

auei = adiei (2.1 l a )  

8-8 .  U 1  = -a"diei-c;-lei-l. (2.11b) 

After differentiating (2.11a) with respect to f i  and (2.11b) with respect to U and then 
equating coefficients of OiP1, 8i+l and Bi we obtain the following equations - .  . 

&cy = a c f ( d i + l  - d i )  a &  = i E f ( d i  - d l - l )  (2.12) 

and 
(2.13) a -6 iaudi+aalidi  -c i - lc i .  

iau(di-di-l)+aali(di-di-l) = C ~ C ' ; + ~  - 2 ~ ~ - ~ C ' f + c f - ~ c ~ - ~ .  

We subtract from (2.13) the similar equation with i + ( i  - 1) to obtain 

(2.14) -d 

Also the pair of equations (2.12) may be manipulated to give 
. I .  

a,c, = ci(di+l-dl)  a,?, =El (d , -d , - l )  (2.15) 
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and then substitution of the expressions (2.9) into (2.15) enables us to solve for ci and Ei. 
Specifically 

ci = ci e"i Ei = gi e"i-1. (2.16) 

To conform with (2.3), we choose ci = ii = 1 for all i. By using these solutions and again 
the expressions (2.9), (2.14) becomes the periodic Toda lattice equation (2.6). So to use 
our previous terminology, (2.12) are the subsidiary equations and (2.14) is the main 
equation. 

3. Derivation of a generalised KVM equation 

In § 2 we have shown that it is possible to derive the periodic SU(n + 1) Toda lattice 
equation by using the set of linear equations (2.7) or equivalently by using the 
zero-curvature condition. In both cases, we solve the pair of subsidiary equations and 
substitute the solution in the main equation to give the Toda lattice equation. In this 
section we are interested in the outcome of, conversely, solving the main equation and 
substituting the solution in the subsidiary equations. Do the resultant subsidiary 
equations replace the Toda lattice equation? 

It is easily checked that a special solution of the main equation (2.14) is given by 

provided that the constants a, a', b and $ satisfy 

a i  (b$)-' = 1. (3.2) 
Now substituting the solution (3.1) into the subsidiary equations (2.12) gives 

( 3 . 3 ~ )  

(3.3b) 
Differentiation of ( 3 . 3 ~ )  with respect to ii and (3.3b) with respect to U and use of (3.1) 
and (3.2) produces the respective equations 

( 3 . 4 ~ )  

(3.46) 

(3.5) 

satisfies the periodic Toda lattice equation. 

considering, rather than (3.3, the combination 
However, a remarkable feature of the subsidiary equations (3.4) is seen by 

a,a,[ln(cf)+ln(c":+l)]=~:c:-'-l-2~?+1~4 + ~ t + 2 ~ : + 1  

= - K~~ e x p [ l n ( ~ ~ + ~ c ~ ) ] .  (3.7) 
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Hence the variable 

p r  = In(cPt:',l) (3.8) 

also satisfies the periodic Toda lattice equation. So, by considering different combina- 
tions of variables, equations (3.3) simultaneously produce two periodic Toda lattice 
equations. This situation parallels the one-dimensional example described in 0 1, in 
which Toda and Wadati (1975) were able to produce from the KVM equations two 
different variables satisfying the Toda lattice equation. Hence we consider the equa- 
tions (3.3) as a generalisation to two dimensions of the KVM equations (1.1). 

We note that if c, and E, are given by (2.16) then, using (3.2), the subsidiary 
equations (3.3) become 

.. - -  - -  
aUa, = b-l(e""g-e""C-1 1 aGc, = b-'(e""C+1 -eau< (3.9) 

and the two Toda lattice variables pl and py are 

pi = aui + 
p i  = aui + Zi. B 

( 3 . 1 0 ~ )  

(3.106) 

To summarise, we have shown that by substituting a special solution of the main 
equation into the subsidiary equations we obtain a generalisation of the KVM equations. 
These are equivalent to two Toda lattice equations. It should be remarked that the 
equations (3.9) and (3.3) respectively can be transcribed to those given by Fordy and 
Gibbons (1980) and Leznov et a1 (1980) in a similar context. A trivial difference is that 
they use one variable with odd and even suffixes where we use two variables, one with a 
tilde and the other without, which naturally arise from our previous work. 

4. Backlund transformations of SU(n + 1) periodic Toda lattices 

To understand the constants (a, a', b and 6) and the two Toda lattice variables (pi  and 
p a )  of 9 3, we shall initially restrict our analysis to the periodic SU(2) Toda lattice, that 
is, when YI = 1. 

In this case all indices will be defined modulo 2 and the extended Cartan matrix is 
given by (2.2b). For this specific example, from (2.4), 

U1 = a42 - 91) 
61 = 2(42 - $1) 

U 2  = 2(91 - 4M 

62 = ah - $2) 
so that 

U 2  = -U1 " U  & = = $. 

By using the identities (4.1) in the equations (3.9) for SU(2) gives 

a,u = 26-' sinh a'& a,ci = - 2b-' sinh am. 

Moreover, the two Toda lattice variables are from (3.10) 
B €3 

p1= -pz = -au+a'6 p1 = - p z  = -(au+a'$). 

(4.1) 

(4.2) 

(4.3) 
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As we have demonstrated in 0 3, both of these variables satisfy the SU(2) Toda lattice 
equation, which may be written as 

auanp = -2 sinh 2p 

From (4.3), we can show that 
the sinh-Gordon equation. 

au= - 3 ( p l + p ? )  a6 = $(pi - p ? )  

and hence after substituting these expressions in (4.2), we obtain 

$a,(pl+p?)= -2y sinhi(p1-p?) ( 4 . 4 ~ )  

3ao(p1 - p ? )  = 2y-' sinh $(PI + p f ) .  (4.4b) 

In (4.4) we have written 

(4.5) 

where the equality in (4.5) is derived from the condition (3.2). The pair of coupled 
first-order differential equations (4.4) is the well known Backlund transformation of the 
sinh-Gordon equation. Hence, at least for the n = 1 case, the two Toda lattice variables 
are related by a Backlund transformation. Furthermore, the identities (4.5) suggest 
that the scaling constants in the combinations ai-' and K 1 b  are related to the Lie 
transformation. 

We now consider the subsidiary equations (3.9) for arbitrary n : it is more convenient 
to use Toda's original displacement variables, qi and q?, to rewrite pi and p? respec- 
tively by the formulae 

E a6-l = Z-lb  

Pi=qi-1-4i p a  = 4y-1 - 4:. (4.6) 

(4.7) ui = a  (4y-1 -si) 
By using the relations (3.10), this is equivalent to defining 

Gi = 6-74 ,  - 4 3  -1 

which is a natural generalisation of the one-dimensional definitions (1.2). 
By substituting (4.7) into (3.9), we directly obtain 

( 4 . 8 ~ )  

(4.86) 

This is the Backlund transformation for the SU(n + 1) Toda lattice which was obtained 
by Fordy and Gibbons (1980) and to which Leznov et a1 (1980) alluded. 

We have thus shown that starting from the set of linear equations (2.7), we can 
naturally obtain the Backlund transformation for the two-dimensional periodic Toda 
lattice from the generalised KVM equations (3.9). This exactly mirrors the one- 
dimensional case described by Toda and Wadati (1975). 

B a, (47 - 4i+d = - y[exp(qi - 4: - exp(qi+i - 4 i+ 1 )I 
aii(qi-q?)= y-'[exp(qi -4i+l)-exp(q?-1-4i)I* B 

5. Simultaneous derivation of the two Toda lattices 

The attraction of the KVM equations is that they are simultaneously equivalent to two 
Toda lattice equations. Furthermore, in the one-dimensional case, it is possible to 
obtain these two equations from one Lax pair, given by (1.7). Therefore it is interesting 
to see whether there is a similar occurrence in two dimensions, when the Lax pair is 
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generalised to the zero field strength condition. So in this section we look for a pair of 
potentials, D, and Da, which simultaneously generate the two Toda lattice equations, 
via the condition 

a,D, -a,D,+[D,, D,]=O. (5.1) 

For neatness of notation, we shall use a = a' = 1, b = 6 = 1 throughout this section. 
We propose that the potentials are 2(n + 1) x 2(n + 1) matrices given by 

(5.2) 
2 ( n + l )  

k = l  
D ,  = - {d[(k+l)/Z] ekk +c[k/2+1] ekk+2) 

where the index k is defined modulo 2(n + 1) and the square brackets denote the 
integral part of the enclosed index. 

In a similar way to (2.9), we introduce the variables cri and Gi by 

(5.3) 

The potentials (5.2) are substituted into the condition (5.1) and the resultant equations 
manipulated as in § 2. The details are given in the appendix and so we only quote the 
results here. The subsidiary equations are solved to give 

t [ ( k + l ) / 2 1  = exp G [ ( k - l i / Z ]  C[k /Z+l ]  = exp g [ k / 2 + 1 ]  (5.4) 

and then the main equation has the form 

a ~ a o ( g [ k / Z + l l  + G [ ( k + l ) / Z ] )  

= exp(6[(k-1)/2] f u [ k / Z ] )  -2  exp(G[(k+1)/21 f ~ [ k / 2 + 1 ] )  

+ eXP(G[(k+3)/2] + c [ k / 2 + 2 ] )  (5.5) 

If in (5.5) we specify k to be odd, that is k = 2i - 1, then the main equation becomes 

(5.6) a,a,(a; + G , )  = exp(v,-, + G I - * ) - 2  exp(g, +G,)+exp(a,+l+G.,+l). 

However when k is even, that is k = 2i, then (5.5) becomes 

a,a (5.7) 

We note that for both k odd and k even. the subsidiary equations (A3), are the same and 
in fact are (2.12). The equations (5.6) and (5.7) are the required pair of Toda lattice 
equations, (3.7) and (3.5) respectively, with c, and c', given by (2.16). Hence, the 
condition (5.1) and D, and D given by (5.2) simultaneously give the two Toda lattices. 

Now to determine a relationship between the paieof potentials (5.2) and the original 
potentials B, and Bo, given by (2.8), we shall transform D, and D a  according to 

+ G I )  = exp(G,-l + cl) - 2 exp(G, + ul+d + exp(GI+, + v. ,+~) .  

DL = ED,E-' D ;  = E D ~ E -  l .  (5.8) 

E is the 2(n + 1) x 2(n + 1) matrix with non-zero entries ekk+l and periodic indices. The 
effect of the transformation (5.8) is to shift periodically the entries of the matrix one 
place to the left along a diagonal. This is easily seen if we write D, and Da explicitly in 
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matrix form as 
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E1 0 2, 0 c1 

0 di 0 c1 

Then 

0: = 

dn 0 cn 

cn 0 d,  
En 0 dl 0 c1 

Since the primed potentials (5 .8 )  also satisfy the condition (5.1), we consider the 

a,(D,-D:)-a,(D,j -DZ)=[Du, D , ] - [D: ,  DZI. (5.11) 
difference 

The details of the calculation are given in the appendix, but we note that 

Explicit calculation of (5.1 1) gives the two pairs of equations (A6) and (A7) from even 
and odd matrix entries respectively. However, if in (A6) and (A7) we make use of the 
solutions (3.1) which previously converted the subsidiary equations into the generalised 
KVM equations, then we obtain just one pair of equations (A8). From the equations 
(A8) we can infer that 

auci = C i ( & + l - - E i )  a--. uc,  = E i ( C i - c i - l )  (5.13) 

which are the generalised KVM equations. 

6. Concluding remarks 

We now summarise the contents of this paper. Firstly, we have shown how the 
generalised KVM equations in two dimensions may be derived by using a pair of 
potentials subjected to the condition (2.7). An important ingredient of this derivation is 
the special solution (3.1) of the main equation, since it converts the subsidiary equations 
into the KVM equations. In addition we have shown how to obtain from the KVM 
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equations two different variables, both of which satisfy the SU(n + 1) periodic Toda 
lattice equations. In contrast to the one-dimensional case, we did not need to use even 
and odd suffixes of one variable, as two different variables naturally arise from the 
potentials B, and B,. 

Secondly, by using an arrangement of variables similar to that of the one-dimen- 
sional case, we have rederived the Backlund transformations of Fordy and Gibbons 
(1980) and Leznov et a1 (1980) for the SU(n + 1) periodic Toda lattice equations. As 
expected, when n = 1, these became the Backlund transformations for the sinh-Gordon 
equation. In addition, the constant scaling factors, which we included in our original 
definition (2.8) of the potentials, are shown to be related to the Lie transformations. 
Furthermore, we expect that these factors are connected to the conservation laws of the 
periodic system. 

Finally, we have defined a pair of larger matrix potentials, D, and D,, which, via the 
zero field strength condition, simultaneously produce the two different Toda lattice 
equations described above. 

However, we should remark that we have not included any attempt to parametrise 
the solutions of the periodic equations. In contrast to the one-dimensional case, it is not 
easy to obtain even a one-soliton solution by using the Backlund transformations 
applied to the trivial solution. This is partly because, in the one-dimensional case, by 
putting, for example 

QF =constant, 

we can solve the first equation of (1.4) to obtain Qk. In the two-dimensional case, from 
(4.7) and (2.16), 

a B  B In c i  =qi- l  -qi In Z4 = qi-l -qi-l 

and so the analogues of (1.4) are the subsidiary equations (4.8). Consequently, since 
( 4 . 8 ~ )  contains a derivative with respect to a different variable from (4.86), we cannot 
separate the qi and 4: and insert a trivial solution. Also the method of solution used in I 
is not directly applicable since the potentials (2.3) are not triangular. However, it may 
be possible to replace B, and B ri in (2.3) by infinite periodic lower and upper triangular 
matrices respectively and then apply the method. 

It is true that the SU(n + 1) periodic Toda lattice equation is a generalisation of the 
SU(2) equation, and hence of the sinh-Gordon equation. It is therefore interesting to 
enquire whether the SU(n + 1) periodic equations share the same properties as those 
possessed by the sinh-Gordon equation; for example, the geometrical properties 
discussed by Crampin et a1 (1977)t. However, we feel that the SU(2) case is not typical, 
since it is endowed with particular symmetries between the variables, as shown in § 4. 
Consequently an analysis of the Backlund transformation using the Iwasawa decom- 
position may not be appropriate for arbitrary n. 

In conclusion, we mention that we have not discussed in depth the shifting matrix E 
of (5.8). In the construction of the potentials B, and Bo for the periodic SU(n + 1) Toda 
lattice, it is the simple roots plus the negative of the maximal root, that is, the set e, 
which play an important part. Now the matrices E, E*, . . . , E", E"+' = I are generat- 
ing elements of a cyclic subgroup of the Weyl group for SU(n + 1) since they cyclically 
permute the diagonal elements. (We could equivalently consider the matrix l? =E-' 

t In this paper, a relationship between the sinh-Gordon Backlund transformation and the Iwasawa 
decomposition for SL(2, R)  is exhibited. 
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which shifts the matrix entries one place to the right along a diagonal.) Therefore, it is 
an interesting problem to investigate the role of E, or equivalently E, in the theory of 
periodic Toda lattice equations and the KVM equations. 
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Appendix. 
Derivation of equation (5.5) 

Hence from (5,1), by comparing coefficients of (A2) and the appropriate derivatives of 
(5.2) we directly obtain the subsidiary equations 

= - 2 C [ k / Z + l ] E [ ( k + 3 ) / 2 ]  + c [ k / Z ] ~ [ ( k + 1 ) / 2 1  + C[k /2+21E[ (k+5) /21 .  (A41 

It is now easy to see that substituting (5.3) into (A3) and solvingfor E [ ( k + 1 ) / 2 ~  and C [ ~ / ~ + ~ I  

gives (5.4). Then substitution of (5.4) and (5.3) into (A4) gives (5.5). 

The matrix equation (5.11) 

The primed potentials (5.10) may be written formally as 
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and so 

oh1 = C " [ k / Z + Z ] C [ ( k + 3 ) / 2 ] ( e k k  - e k + Z k + Z )  

e k k  + 2 ( d [ ( k  +3)/2+ 1]C [ ( k  +3)/21 - d [ ( k  + 1 ) /2+ 1]C [ ( k  +3)/21) - - 
e k + z k  ( d [ k / ~ + 2 ] ? [ k / ~ + ~ ]  - d [ k / ~ + ~ ] E [ k / ~ + z ]  (A51 

By using the commutators ( A 2 )  and (A5) and the expressions (5.12) in the condition 
( 5 . 1 1 )  we obtain: 

(i) when k = 2i 

(ii) when k = 2i - 1 

ac(dj-dj+i) = E i ( ~ j  - ~ j - l ) - E j + l ( ~ j + l - ~ j )  ( A 7 a )  

a u  (Ci - c i + l )  = c i ( d i + l -  d i )  - C i + l ( d i + 2  - d i + l ) *  ( A 7 b )  
Note that for k = 2i the coefficient of e k k c 2  on the right-hand side of ( 5 . 1 1 )  is zero and 
similarly for the coefficient of e k + Z k  when k = 2i - 1 ,  which is consistent with the 
left-hand side. 

Now we use the expressions (3.1) for the d and d' differences in the left-hand sides of 
( A 6 a )  and ( A 7 a )  and in the right-hand sides of ( A 6 b )  and ( A 7 b )  to give the repeated 
set of equations 
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